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Molecular Dynamics and Time Reversibility 
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We present a time-symmetrical integer arithmetic algorithm for numerical 
(molecular dynamics) simulations of classical fluids. This algorithm is used to 
illustrate, through concrete examples, that time-asymmetric evolutions are typi- 
cal for systems of many particles evolving according to reversible microscopic 
dynamics and to calculate the asymptotic behavior of the velocity autocorrela- 
tion function with an improved accuracy. The equivalence between equilibrium 
time averages and microcanonical ensemble averages is checked via two new 
sampling methods for computing microcanonical averages of classical systems. 

KEY WORDS:  Numerical simulations; irreversibility; Monte Carlo methods; 
microcanonical ensemble; long-time tail. 

1. I N T R O D U C T I O N  

Ludwig Boltzmann gave a clear and convincing explanation of how 
macroscopic irreversibility arises from the reversible Newtonian equations 
operating at the microscopic level. His well-known solution to that problem 
is based on the very large number of particles (N> 10 2~ involved in the 
evolution of macroscopic systems. Boltzmann argued that, for such large 
N, any initial state corresponding to a nonequilibrium macroscopic situa- 
tion will move toward states of increasing Boltzmann entropy, i.e., toward 
equilibrium (for a recent, comprehensive and lucid review see Lebowitz(l)). 
While Boltzmann's point of view is now accepted by most physicists, it 
does have some prominent vocal opponents (e.g., Karl Popper (2) and Ilya 
Prigogine (3)) and, as pointed out in ref. 1, there is still an alarming amount 
of confusion about "the problem of irreversibility." In particular there are 
questions of whether the observed time asymmetry in "real life" may not be 
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due to some inherent microscopic time-asymmetric laws already discovered 
(such as those present in the weak interaction) or yet to be discovered. 
Another objection is that physical systems are never truly isolated and 
moreover that no one really understands fully how such nonisolated 
systems behave in a quantum mechanical world. 

It might have been thought that computer simulations should provide 
a privileged way for illustrating Boltzmann's point of view. These 
simulations are made on deterministic and finite computers. They rely on 
algorithms which, in general, are explicitly time-reversible. They clearly 
show approach to equilibrium for large systems. The fact that in simulations 
N is not as large as in real macroscopic systems is not really a big problem. 
For the values of N considered in numerical simulations (a few hundred or 
few thousands) the recurrence time (Poincar6 time) of any particular 
microscopic state is overwhelmingly larger than the time of the universe, 
so that such a recurrence is practically unobservable in any computer 
calculation. 

It turns out, however, that, due to rounding-off errors, the actual 
simulations performed up to now are not strictly time-reversible and there- 
fore cannot help to dissipate the above-mentioned confusion. In a classic 
paper, ~4) Orban and Bellemans considered the evolution of a system of 
colliding hard disks. Although the equations of motion for such a system 
are fundamentally reversible, the computed trajectories obtained when, at 
a given time, all velocities are reversed do not coincide with those traced 
by the direct motion. The reason for this discrepancy is that, when the 
floating-point arithmetic of any computer is used for a simulation (as is 
generally done), the rounding-off errors may not be the same in the direct 
and time-reversed computations. Due to the instability of the dynamical 
equations with respect to small perturbations, those tiny differences 
propagate and increase exponentially. Orban and Bellemans provided a 
dramatic illustration of this effect by computing a Boltzmann H-function 
for a hard-disk system starting from an ordered configuration and 
comparing it to the same function after a time-reversal: the H-function 
corresponding to the reversed motion did rise when the origin of time was 
approached from above, but less than it should have, because the memory 
of the original correlations was partly lost. 

The first purpose of the present paper is to show that the computer 
simulations, which have proven their relevance in predicting the actual 
behavior of simple and complex many-particle systems, can be also used to 
support Boltzmann's interpretation when they are properly carried out. 
The integration algorithm proposed by one of us ~5) and generally used in 
molecular dynamics (MD) computations is revisited. After a brief historical 
digression, we proceed to improve the computer implementation of this 
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algorithm, which is explicitly time-symmetrical, but is subject, in specific 
computations, to rounding-off problems similar to those met by Orban and 
Bellemans. We show that, by a suitable use of integer arithmetic operations, 
those unwanted numerical effects are entirely suppressed. The modified 
implementation of the algorithm is about as efficient as the unmodified one. 
It has the further advantage of yielding an exact conservation of total 
momentum and of offering the theoretical guarantee that no systematic 
drift of the total energy should occur. 

Several long computations have been performed using this new algo- 
rithm so as to test that the reversed motion trajectories exactly coincide 
with the direct ones, both by calculating the corresponding H-functions, 
which turn out to be identical, and by checking directly that the endpoints 
of the reversed trajectories exactly coincide with the corresponding origins 
of the direct trajectories. These long simulations have also allowed us to 
verify that the present changes of the MD algorithm do not induce a small 
but monotonic increase or decrease of the total energy. 

The computations are all performed starting from an unstable ordered 
initial configuration, which immediately melts. As remarked by Lebowitz in 
the above-quoted paper, the equilibrium state which is reached thereafter 
and remains in the rest of the direct computation is quite peculiar. When 
integrated forward, it looks quite normal, and in particular it leads to an 
asymptotic time decay 1/t 3/2 for the velocity autocorrelation function. This 
function is calculated here for a continuous potential with a precision 
which, improved by a factor of 3 as compared with the previously known 
results, (6) is now similar to that obtained for a system of hard spheres. (7) 
But when, at any time, velocities are reversed, those "normal" equilibrium 
trajectories are traced back to the highly ordered initial state which has 
been exactly memorized. If the time goes on in the reverse direction, the 
"solid" melts again and different equilibrium trajectories are obtained, 
which contain also the exact memory of the ordered state which they met 
on their path. 

Another property of equilibrium trajectories is that, in the phase 
space, they cover up densely and uniformly a surface of states of identical 
energy, so that time averages of microscopic quantities are equivalent to 
microcanonical ensemble averages. In order to illustrate properly this 
equivalence, we must be able to compute those ensemble averages. Such 
computations are performed by two different Monte Carlo (MC) methods 
proposed by Ray (s) and by Creutz. (9) We show that the method devised by 
Ray can be cast into a form which makes it very similar to the standard 
Metropolis (1~ method (the only difference is that, instead of being fixed, 
the temperature is calculated, at each step of the sampling process, from 
the kinetic energy defined as the difference between total and potential 
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energies). The Creutz algorithm derived for a system of spins on a lattice 
is extended to the case of classical fluicls. It is modified so as to keep both 
the total energy and momentum fixed. 

2. T I M E - R E V E R S I B L E  A L G O R I T H M  

In order to integrate Newton's equation of motion of the ith molecule 
located at position ri at time t, we use the algorithm 

ri(t + h) = - r i ( t -  h) + 2r~(t) + h2Fi(t) (1) 

where F~ is the sum of the forces on that molecule divided by its mass and 
h is the time step of integration. This time-symmetrical algorithm (5~ 
is widely used in molecular dynamics computations, where the steeply 
varying forces create a specific problem. 

The algorithm (1) was proposed by one of us as a part of a systematic 
effort aimed at reducing the computer time of the MD simulations. In his 
admirable pioneering work, Rahman (11) used, for integrating Newton's 
equations, the Runge-Kutta method, a predictor-corrector method which 
breaks time symmetry. In order to build a time-symmetrical integration 
scheme, we simply added the Taylor expansions of ri(t + h) and of r ~ ( t -  h) 
so as to get an expansion scheme in even powers of h. We then thought 
for a short while that the complicated three-body terms involved in the 
evaluation of the h 4 term of the scheme could be approximated, but, as 
should have been evident to us from the start, that term must be computed 
with utmost care in the case of steeply varying potentials such as the 
Lennard-Jones potential. When we finally decided to keep algorithm (1) as 
such, we realized that it was simply the finite-difference transcription of 
Newton's equation and we did not bother to search for its first occurrence 
in the literature, because of its triviality. We recently discovered that it had 
been explicitly written and used by the astronomer Joseph Delambre in 
1791. Unfortunately, Delambre clearly considered this algorithm as too 
obvious to give any reference to previous literatureJ 12) 

It should be added that some standard textbooks on numerical 
analysis (e.g., ref. 13) give a powerful scheme devised at the beginning of 
the present century so as to integrate accurately Newton's equation in the 
case of smooth interactions. (~4) This scheme, due to St6rmer, ~5) has been 
shown to be outstandingly good in that case and has been successfully 
applied to astronomical and electromagnetic computations. In St6rmer's 
scheme, the correction terms in the Taylor expansion considered above are 
calculated through finite differences: this entails a break in the time 
symmetry which has no consequence in the cases for which the method was 
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devised, but would have catastrophic effects in the case of intermolecular 
interactions. It is thus misleading as well as unfounded from a historical 
standpoint to associate, as is sometimes done, (16) the simple algorithm (1) 
used in the MD simulations with the sophisticated scheme invented by 
St6rmer. 

The reason why the obvious time symmetry of algorithm (1) is broken 
in actual computations where the positions and forces involved in (1) are 
taken as floating-point numbers is rather trivial. It stems from the fact that, 
according to the direction of the time arrow, the rounding-off procedure 
currently used in computers (which is practically unpredictable and acts as 
a very small random noise) may lead to different results whenever, during 
the integration process described by formula (l), the previous coordinate, 
that is, either r i ( t - h )  or re(t+ h), according to the direction of the time 
arrow, is subtracted from quantities depending only on t. This eventual 
break in the time symmetry could be removed by biasing systematically the 
rounding-off procedure. 

A simpler and better method consists in using integer arithmetic for 
the crucial part of the computation: if r i ( t+ h), ri(t), r i ( t -h ) ,  and h2Fi(t) 
are represented by integers, the finite-difference algorithm (1) will stay 
exactly time-reversible. With this aim in view, we choose the side of the 
cubic box (with periodic boundary conditions) in which the particles are 
enclosed as our unit of length. With this unit of length, we associate a large 
integer equal to 26o (about 1018). This guarantees that the distances 
between molecules are calculated with a very high degree of accuracy (one 
part in 1017-1018). 

The use of an integer representation of the distances does not need to 
be extended to the computation of the forces, which depends only on 
time t. In fact, it is convenient to convert the interatomic distances at time t 
in a floating-point representation in order to compute easily the partial 
force f,j(t). Then h2fo.(t) is converted in the integer representation and is 
used to compute h2Ft(t)= ~j  h2fr As we have said in the introduction, 
the use of integer arithmetic for expressing the partial forces has the further 
advantage that it remedies a defect inherent to all MD algorithms 
performed in floating-point arithmetic. Because adding the same numbers 
in a different order may give rise to different rounding-off errors, there is 
no guarantee that the forces Fi(t) are calculated in such a way that their 
sum is zero and, consequently, that the total momentum is conserved. 

As MD practitioners know, there is, in the course of an actual 
computation, a slight drift in the total momentum, which in turn entails 
a drift in the total kinetic energy of the system. In conventional MD 
computations, this effect may be minimized by subtracting out the spurious 
momentum introduced by the rounding-off procedure, but it cannot be 
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consistently suppressed. The problem entirely disappears with our method 
because, since Z ;  hZFi is exactly zero, the total momentum is exactly con- 
served. The only remaining weak point of the method is that the total 
energy is not exactly conserved. But, as was mentioned in the introduction, 
the exact time reversibility of the integration algorithm precludes any 
systematic drift in the total energy, because the same drift should also 
appear in the time-reversed motion, which leads to an evident contradic- 
tion (this remark is due to Jean-Michel Caillol). A Fortran program, given 
in Appendix A, shows how the present MD algorithm was implemented. 

In order to check our MD algorithm, we performed several computa- 
tions for systems of particles interacting through the repulsive part of the 
Lennard-Jones potential: 

v(r) = 4e - + e, r < 21/6o - 

= 0 ,  r < 21 /6o  - 

(2) 

Three computations were made, for systems of 108, 256, and 4000 atoms, 
where the time reversal was done at time t r= 2 x 105h, 105h, and 104h, 
respectively. The integration step is taken to be O.O046188(cr2m/~) ~/2, where 
m is the mass of the atoms. When the evolution time reaches its maximum 
value tr, the vectors r~(tr+h) and ri(tr-h) are interchanged and the 
integration process is carried out the atoms moving backward, until the 
initial configuration is recovered, at time t = 2tr + h. This initial configura- 
tion is that of an fcc perfect crystal with a density corresponding to 
po-3= 0.45. To complete the initial conditions, we define the configuration 
at time t = - h  by adding to the positions at time t = 0  small random 
displacements drawn from a Gaussian probability distribution, the variance 
of this distribution being proportional to the initial kinetic energy of the 
system. As usual, the velocities are calculated from the formula v~(t)= 
[ri(t + h) - r~ ( t -  h)]/2h, where floating-point arithmetic is used. The time 
reversibility of the algorithm is readily checked by computing the quantity 
L where the components of r~, x~, yi, and zi are integer numbers: 

I=  ~ Ix,(O)- xi(2t~ + h)l + ly,(O)- y~(2tr + h)l + Iz,(O)- zi(2t~ + h)l (3) 
i 

which should exactly vanish. 
Exploiting a mistake made in a preliminary version of the program, 

we could show that, when floating-point arithmetic is used, the possible 
rounding-off error induced by substituting, at the instant tr when the time 
is reversed, ri(t~) or ri(tr + h) for one of their 26 corresponding values in 
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the neighboring replicas of the simulation cell is a sufficient cause to drive 
the system toward an entirely different trajectory. 

In Table I, we give the thermodynamic properties of the three systems 
considered here (108, 256, and 4000 atoms). We also give the maximum 
difference between the total energy in the initial state and that obtained in 
the whole course of the computation. For the sake of comparison with 
Orban and Bellemans, we have computed, at each integration step, the 
H-function of Boltzmann normalized to 1 at time t = 0: 

H(t) = j" f~(v)log f~(v) dv 
fo(V) log fo(v) dv (4) 

where f~(v) is an unnormalized probability distribution of the modulus v of 
the atomic velocities at time t. 

Due to the finite number of atoms, ft(v) fluctuates around the 
Maxwell distribution when the system is in an equilibrium state. The 
time evolution of H(t) is plotted in Fig. 1. The reversible character of the 
trajectories is clearly shown by the behavior of H(t) for times in the 
neighborhood of 2/r-b h. At that time, the value 1 is exactly recovered, in 
contrast with the computation of Orban and Bellemans. The function H(t) 
keeps constant and equal to 1 for a few steps. The explanation of this 
occurence is straightforward: the initial configuration which is recovered by 

Table I. Thermodynamic Properties of the Systems Considered ~ 

N T* U CF E~ EU E m E~ E. t* t* 

M D  108 0.975 0.213 1.73 1.6777 1.6772 1.6769 1.6790 1.6748 2 8 

M D  256 1.701 0.380 1.72 2.9316 2.9311 2.9314 2.9339 2.9299 1 4 

M D  4000 1.617 0.358 1.71 2.7854 2.7852 2.7850 2.7854 2.7848 0.1 0.4 

M D  4000 2.176 0.481 1.72 3.7434 3.7453 3.7447 3.7459 3.7434 - -  4 

M C  4000  2.179 0.481 1.72 - -  - -  3 .7487 - -  - -  - -  0.2 

M C  4000  2.183 0.470 1.69 - -  - -  3.7457 - -  - -  - -  0.96 

a C o l u m n s  1-5,  respectively, give for the simulations discussed in the article the type M D  o r  

M C ,  the number N of atoms used in the run, the temperature T * = k  BT/c, the potential 
energy U, and the specific heat Cv. F o r  the  M D  s imula t ions ,  E i and Ef are the total energies 
of the first and last steps of the run ,  Em is the average of the total energy in the run, and 
Ex a n d  E ,  are the maximal and minimal total energies during the run.  tr* indicates the time 
step (divided by 105) where the time reversal was done. t* is the total number (divided 
by 105) of time steps in the MD runs. These long MD runs show that there is no systematic 
increase or decrease of the total energy in the present MD algorithm. For the MC runs 
(sixth line: Ray procedure; last line: Creutz procedure), the last column gives the number of 
trial moves per atom (divided by 105). The statistical errors are smaller than 1 %  for the M D  

runs, about 1 %  for the MC(Ray) run and ~ 2 %  for the M C ( C r e u t z )  run.  F o r  all runs, the 
density is per 3 =  0.45. 



526  L e v e s q u e  and  V e r l e t  

v 
-I- 

1.0- 

0.8 

1.0- 

0.8 

1.0- 

0.6 

I 

0 5~0 100 

I I 

0 50 100 

1.0 

0.8 

1.0 

0,8 

1,0 

i I 0.6 
0 50 100 

19900 20100 

I 

199900 200100 

I 

399900 400100 

Vh 

Fig. 1. Parts (a) and (a') illustrate the time evolution of the Boltzmann H-function H(t) 
[Eq. (4)] obtained by a time-reversible simulation of a 108-atom system where time reversal 
is done at the step 200,000. Part  (a)gives the plot of H(t) for the first 90 time steps and part 
(a') for the 90 time steps before and after the time step 400,000 where the system has gone 
back to the initial configuration. Parts (b, b') and (e, c') give similar plots for systems of 256 
and 4000 atoms. In these simulations the time reversal is done at the time steps 100,000 and 
10,000, respectively and the systems have gone back to their initial configurations at the steps 
200,000 and 20,000. The reversibility of the trajectories is manifested by the fact that the left 
parts of the plots (a', b', c') are mirror images of the graphs (a, b, c). The results for the 
256-atom and 108-atom systems illustrate the fact that the fluctuations are larger in small 
systems. The initial configuration of the 108-atom systems was chosen more "ordered" than 
for the two other systems: the initial positions were on an fcc lattice and all the moduli of the 
velocities were identical. 
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the time reversal corresponds to an artificial low-density crystal for which, 
due to the shortness of the range of the potential, the atoms do not interact 
with each other. H(t) looks symmetrical around 2tr + h, but this symmetry 
is only approximate,  as it should be. The computat ion was carried out up 
to time t = 4tr: obviously the system went back to its equilibrium state. 

Using the above-described M D  algorithm, we have preformed an 
accurate computat ion of the asymptotic behavior of the velocity autocorre- 
lation function (VAF) without having to worry about  small fluctuations 
in the total momentum. We have carried through 20 runs of 2 x 104 
integration steps [with a step size h = O.O046188(a2m/e) 1/2] for a system of 
4000 atoms at pa  3 =0.45 and kBT/e = 2.176. The potential energy is then 
equal to 0.4810~ and the specific heat at constant volume Cv to 1.72kB. 
Averaging over these 4 x 105 integration steps, we find that the average 
total energy per atom is 3.7447e, the initial energy being equal to 3.7434e, 
the final value to 3.7453e, the maximum value reached during the computa- 
tion to 3.7459e, and the minimum value to 3.7434e. As may be seen from 
Table I, where similar data for other computations are given, the apparent  
rise of the final total energy above the initial one is not typical. 

The computed VAF is given in Table lI  with the estimated standard 
error. The present results should be compared with those obtained by 
Levesque and Ashurst. (6~ They are in good agreement with theirs, 2 but 
somewhat more precise (the standard error on the VAF is reduced by a 
factor 3). As Table II  shows, the asymptotic value of the VAF (which is of 
the form c~/t 3/2) is reached for t > 640h, a higher value than was estimated 
from the available data in ref. 6, where the value t > 460h was given. This 
largely reduces the range available to estimate the asymptotic decay of the 
VAF, as, due to sound waves, times above 800h cannot be used. Within 
one standard error, the product f ( t ) x  t 3/2 is constant for t >  640h. The 
value of c~ = 0.018 is about  10% smaller than the value estimated in ref. 6 
(using a time unit differing by a factor 481/2). This value is in better 
agreement with the theoretical value 0.017 which can be estimated from 
the diffusion coefficient and the kinematic viscosity through the formula 
~=2kBT/m[4r~(D+ v)] 3/2, where D is the self-diffusion coefficient and v 
the kinematic viscosity. As a concluding remark, it should be noticed that 
the present time-reversible M D  algorithm can advantageously be used on 
all computers where the integer arithmetic is vectorized whenever the exact 
conservation of momentum and the improvement in energy conservation 
are sought. The price to pay is a slight increase (about 10-20%) of the 
C P U  elapsed time. 

2 A misprint should be corrected in that paper: the value of the potential energy should read 
0.4812. It should also be noticed that Cv was not computed directly as it is here, but was 
obtained using perturbation theory. 
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Table II. Ve loci ty  Autocorre la t ion Function and Standard Error a 

t f ( t )  t~  f ( t )  t 3/2 a s 

0 . 0 0 0 0  0 . 1 0 0 0  + 01 0 . 0 0  + 0 0  0 . 0 0 0 0  + 0 0  0 . 0 0  + 0 0  

0 . 0 4 6 2  0 . 8 8 2 7  + 0 0  0 .39  - 0 4  0 . 8 7 6 2  - -  0 2  0 .38  - 0 6  

0 . 0 9 2 4  0 . 6 9 1 0  + 0 0  0 .93  - 0 4  0 . 1 9 4 0  - -  01 0 .26  - 05  

0 . 1 3 8 6  0 . 5 3 2 5  + 0 0  0 .13  - 03  0 . 2 7 4 7  - -  01 0 .67  - 05  

0 . 1 8 4 8  0 . 4 1 2 9  + 0 0  0 .15  - 03  0 . 3 2 7 9  - 01 0 .11 - 0 4  

0 . 2 3 0 9  0 . 3 2 3 9  + 00  0 .16  - -  03  0 . 3 5 9 4  - 01 0 .17  - 0 4  

0 .2771  0 . 2 5 7 6  + 0 0  0 .16  - -  03  0 . 3 7 5 8  - 01 0 .22  - 0 4  

0 . 3 2 3 3  0 . 2 0 8 1  + 0 0  0 .16  - 03  0 . 3 8 2 5  - 01 0 .28  - -  0 4  

0 . 3 6 9 5  0 . 1 7 0 9  + 0 0  0 .16  - 03  0 . 3 8 3 9  - 01  0 .35  - -  0 4  

0 . 4 1 5 7  0 . 1 4 2 7  + 0 0  0 . 1 6  - 03  0 . 3 8 2 5  - 01 0 .41 - 0 4  

0 . 4 6 1 9  0 . 1 2 1 0  + 0 0  0 .15  - 03  0 .3801  - 01 0 .47  - 0 4  

0 .5081  0 .1041  + 0 0  0 . ! 5  - 03  0 . 3 7 7 3  - 01 0 . 5 2  - 0 4  

0 . 5 5 4 3  0 .9071  - 01  0 .14  - 03  0 . 3 7 4 3  - -  01  0 . 5 7  - 0 4  

0 . 6 0 0 4  0 . 7 9 7 7  - -  01  0 . 1 4  - 03  0 .3711  - 01 0 .66  - 0 4  

0 . 6 4 6 6  0 . 7 0 7 3  - 01 0 .15  - 03  0 . 3 6 7 8  - 01 0 .78  - 0 4  

0 . 6 9 2 8  0 . 6 3 1 5  - 01 0 .15  - 03  0 .3641  - 01  0 .88  - 0 4  

0 . 7 3 9 0  0 . 5 6 6 9  - 01 0 .15  - -  03  0 .3601  - 01 0 .98  - 0 4  

0 . 7 8 5 2  0 .5111  - 01 0 .15  - -  03  0 . 3 5 5 6  - 01 0 .10  - 03  

0 . 8 3 1 4  0 . 4 6 2 6  - 01 0 .14  - 03  0 . 3 5 0 5  - 01  0 . 1 0  - -  03  

0 . 8 7 7 6  0 . 4 1 9 4  - 01 0 . 1 4  - 03  0 . 3 4 4 8  - 01 0.11 - 03  

0 . 9 2 3 8  0 . 3 8 1 6  - 01 0 . 1 4  - 03  0 . 3 3 8 8  - 01 0 .12  - 03  

0 . 9 6 9 9  0 .3481  - 01 0 . 1 4  - 03  0 . 3 3 2 5  - 01 0 .13  - 03  

1 .0161 0 . 3 1 8 3  - 01 0 .14  - 03  0 .3261  - -  01  0 . 1 4  - 03  

1 .0623  0 . 2 9 1 9  - -  01 0 .14  - 03  0 . 3 1 9 6  - -  01 0 .15  - 03  

1 .1085  0 . 2 6 8 4  - -  01 0 . 1 4  - 03  0 . 3 1 3 2  - 01 0 .15  - 03  

1 .1547  0 . 2 4 7 4  - 01 0 .13  - 03  0 . 3 0 7 0  - 01 0 .16  - 03  

1 .2009  0 . 2 2 8 7  - 01 0 .13  - 03  0 . 3 0 1 0  - 01 0 .17  - 03  

1 .2471 0 . 2 1 1 8  - 01 0 .13  - -  03  0 . 2 9 5 0  - 01 0 .18  - 03  

1 .2933  0 . 1 9 6 6  - 01 0 .13 - 03  0 .2891  - 01  0 .19  - -  03  

1 .3395  0 . 1 8 2 9  - 01 0 .13  - 03  0 . 2 8 3 5  - 01 0 .19  - -  03  

1 .3856  0 . 1 7 0 4 - 0 1  0 .13  - 0 3  0 . 2 7 7 9  - 0 1  0 . 2 0 - 0 3  

1 .4318  0 . 1 5 9 0  - 01 0 . 1 2  - 03  0 . 2 7 2 5  - 01 0 .20  - 03  

1 .4780  0 . 1 4 8 9  - 01 0.11 - 03  0 . 2 6 7 6  - 01 0 . 2 0  - 03  

1 .5242  0 . 1 3 9 9  - 01 0 . 1 0  - 03  0 .2633  - -  01 0 . 2 0  - 03  

1 .5704  0 . 1 3 1 7  - -  01 0 .10  - 03  0 . 2 5 9 3  - 01 0 . 2 0  - 03  

1 .6166  0 . 1 2 4 2  - 01 0 .10  - 03  0 , 2 5 5 3  - 01 0 . 2 0  - 03  

1 .6628  0 . 1 1 7 2  - 01 0 .99  - -  0 4  0 . 2 5 1 3  - 01 0.21 - 03  

1 .7090  0. 1107  - 01 0 .97  - 0 4  0 . 2 4 7 5  - 01 0.21 - 03  

1.7551 0 . 1 0 4 9  - 01 0 .98  - 0 4  0 . 2 4 4 0  - 01 0 .22  - 03  

1 .8013  0 .9951  - 0 2  0 .10  - 03  0 . 2 4 0 5  - 01 0 . 2 4  - -  03  

1 .8475  0 . 9 4 4 6  - 0 2  0 . 1 0  - 03  0 . 2 3 7 2  - 01 0 .26  - 03  

1 .8937  0 . 8 9 7 4  - 0 2  0 .11 - 03  0 . 2 3 3 8  - 01 0 .29  - 03  

T h e  s e c o n d  c o l u m n  g ives  t h e  v a l u e s  o f  f ( t ) =  ( v ( t ) v ( 0 ) ) / ( v ( 0 ) v ( 0 ) )  c a l c u l a t e d  f r o m  20 

r u n s  of  2 0 , 0 0 0  t i m e  s teps .  T h e  t h i r d  c o l u m n  g ives  the  s t a n d a r d  e r r o r  as  o n  f ( t ) .  T h e  f o u r t h  

a n d  fif th c o l u m n s  g i v e  the  s a m e  r e s u l t s  fo r  t he  f u n c t i o n  f ( t )  t 3/2. 
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Table  II.  (Continued) 

t f ( t )  a~ f ( t )  t 3/2 a, 

1 .9399  0 . 8 5 3 6  - -  0 2  0 . 1 2  - -  03  0 . 2 3 0 6  - -  0 t  0 .31  - -  03  

1 .986  t 0 . 8 1 2 3  - -  0 2  0 . 1 2  - -  0 3  0 . 2 2 7 3  - -  01  0 . 3 2  - -  03  

2 . 0 3 2 3  0 . 7 7 5 1  - -  0 2  0 .11  - -  0 3  0 . 2 2 4 5  - -  01 0 . 3 2  - -  03  

2 . 0 7 8 5  0 . 7 4 3 0  - -  0 2  0.1 t - -  0 3  0 . 2 2 2 6  - -  01  0 . 3 2  - -  03  

2 . 1 2 4 6  0 . 7 1 3 0  - -  0 2  0 . 1 0  - - 0 3  0 . 2 2 0 8  - -  01 0 . 3 2  - -  03  

2 . 1 7 0 8  0 . 6 8 2 5  - -  0 2  0 . 1 0  - -  03  0 . 2 1 8 3  - -  01 0 . 3 2  - - 0 3  

2 . 2 1 7 0  0 . 6 5 2 2  - -  0 2  0 . 1 0  - -  0 3  0 . 2 1 5 3  - -  01  0 .33  - -  03  

2 . 2 6 3 2  0 . 6 2 3 8  - -  02  0 . 1 0  - -  0 3  0 . 2 1 2 4  - -  01 0 . 3 5  - -  0 3  

2 . 3 0 9 4  0 . 5 9 7 7  - -  0 2  0 .11  - -  0 3  0 . 2 0 9 7  - -  01 0 .38  - -  0 3  

2 . 3 5 5 6  0 . 5 7 3 5  - -  0 2  0 . 1 2  - -  0 3  0 . 2 0 7 3  - -  01  0 .41  - -  0 3  

2 . 4 0 1 8  0 . 5 5 3 0  - -  0 2  0 . 1 2  - -  0 3  0 . 2 0 5 8  - -  01 0 . 4 4  - -  03  

2 . 4 4 8 0  0 . 5 3 5 7  - -  0 2  0 .12  - -  0 3  0 . 2 0 5 2  - -  01 0 . 4 5  - -  0 3  

2 . 4 9 4 2  0 . 5 2 0 2  - -  0 2  0 .12  - -  03  0 . 2 0 4 9  - -  01 0 . 4 5  - -  03  

2 . 5 4 0 3  0 . 5 0 4 7  - -  0 2  0 . 1 2  --  0 3  0 . 2 0 4 3  - -  0 t  0 . 46  - -  03  

2 . 5 8 6 5  0 . 4 8 7 0  - -  0 2  0.1 t - -  03  0 . 2 0 2 6  - -  01  0 . 4 7  - -  0 3  

2 . 6 3 2 7  0 . 4 6 8 0  - -  0 2  0.1 l - -  0 3  0 . 1 9 9 9  --  01  0 . 4 6  - -  0 3  

2 . 6 7 8 9  0 . 4 5 1 5  - -  0 2  0 . 1 0  - -  0 3  0 . 1 9 7 9  - -  01 0 .45  - -  0 3  

2 . 7 2 5 1  0 . 4 3 6 8  - -  0 2  0 . 1 0  - -  03  0. t 9 6 5  - -  01 0 . 4 5  - -  03  

2 . 7 7 1 3  0 . 4 2 3 4  - -  0 2  0 . 1 0  - -  0 3  0 . 1 9 5 3  - -  01  0 . 4 6  - -  03  

2 . 8 1 7 5  0 . 4 1 1 4  - -  0 2  0 . 9 7  - -  0 4  0 . 1 9 4 6  - -  01  0 . 4 6  - -  03  

2 . 8 6 3 7  0 . 4 0 0 0  - -  02  0.91 - -  0 4  0 . 1 9 3 8  - -  01 0 . 4 4  - -  03  

2 . 9 0 9 8  0 . 3 8 8 2  - -  0 2  0 . 8 4  - -  0 4  0 . 1 9 2 7  --  01  0 . 4 2  - -  03  

2 . 9 5 6 0  0 . 3 7 5 3  - -  0 2  0 . 8 0  - -  0 4  0 . t 9 0 7  - -  0 t  0 .41  - -  0 3  

3 . 0 0 2 2  0 . 3 6 1 2  - -  0 2  0 . 7 6  --  0 4  0 . 1 8 7 9  - -  O l  0 . 39  - -  0 3  

3 . 0 4 8 4  0 . 3 4 7 1  - -  02  0 .71  - -  0 4  0 . 1 8 4 7  --  01  0 . 3 7  - -  03  

3 . 0 9 4 6  0 . 3 3 4 4  - -  0 2  0 .68  - -  0 4  0 . 1 8 2 0  - -  0 t  0 . 3 7  - -  0 3  

3 . 1 4 0 8  0 . 3 2 4 4  - -  0 2  0 .67  - -  0 4  0 . 1 8 0 5  - -  01  0 . 3 7  --  0 3  

3 . 1 8 7 0  0 . 3 1 8 2  - - 0 2  0 . 6 9  - - 0 4  0 . 1 8 1 0 - - 0 t  0 . 3 9  - - 0 3  

3 . 2 3 3 2  0 . 3 1 3 9  - -  0 2  0 .78  - -  0 4  0 . 1 8 2 5  --  01  0 . 4 5  - -  0 3  

3 . 2 7 9 3  0 . 3 0 9 8  - -  0 2  0 .90  - -  0 4  0 . 1 8 4 0  - -  O1 0 .53  - -  03  

3 . 3 2 5 5  0 . 3 0 5 4  --- 0 2  0 . 1 0  - -  03  0 . 1 8 5 2  - -  01 0.61 - -  03  

3 . 3 7 1 7  0 . 3 0 0 7  - -  0 2  0 .11  - -  03  0. 1862  - -  01 0 .68  - -  0 3  

3 . 4 t 7 9  0 . 2 9 6 0  - -  0 2  0 . 1 2  - -  0 3  0 . 1 8 7 0  - -  01 0 . 7 4  - -  03  

3 .4671  0 . 2 9 0 3  - -  0 2  0 .12  - -  03  0 . 1 8 7 1  - -  01 0 . 7 7  - -  03  

3 . 5 1 0 3  0 . 2 8 3 8  - -  02  0 .12  - -  03  0 . 1 8 6 6  - -  0 t  0 . 78  - -  03  

3 . 5 5 6 5  0 . 2 7 5 8  - -  0 2  0 . 1 2  - -  03  0 . 1 8 4 9  - -  01  0 .78  - -  03  

3 . 6 0 2 7  0 . 2 6 7 4  - -  0 2  0. t 1 - -  03  0 . 1 8 2 9  - -  01 0 . 7 6  - -  0 3  

3 . 6 4 8 9  0 . 2 5 9 8  - -  0 2  0 . 1 0  - -  03  0 . 1 8 1 1  - -  01 0 .75  - -  03  

822/72/3~.-8 
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3. M I C R O C A N O N I C A L  M O N T E  CARLO M E T H O D S  

The purpose of this section is to provide a test of the equivalence of 
time averages and microcanonical averages as far as equilibrium properties 
are concerned. In order to perform this comparison, we have adapted two 
different MC methods, one proposed by Ray, (s) the other by Creutz. (9) 

Let us proceed with the first method. Let W~(R) be the microcanoni- 
cal probability density of a system of N atoms, E being the total energy of 
that system and R = {rl, r2 ..... rN}. As shown by Ray, this probability can 
be written, for large values of N, in the form 

WE(R ) = C [ E -  U(R)] 3~v/2-1 o ( g -  U(R)) (5) 

where U(R) is the potential energy of the N atoms, C is a constant, and O 
is the Heaviside function, which guarantees that the total kinetic energy of 
the system, K ( R ) = E - U ( R ) ,  stays positive. When, in order to sample 
phase space, a random displacement of an atom is carried out resulting in 
a new configuration R', the potential energy is changed by an amount 
AU(R,R'). The probability ratio Pe(R,R')  of the two configurations 
defined by R and R' is then 

whence 

r E _  U(R,  ) ~3N/2 - 1 
PE(R, R') = i_-~--- - U--~J  (6) 

R') 
log Pc(R, R ' )=  ( ~ - - l j [ . E  - U(R, 

If we define a "configuration temperature" through the equation 

2 ( E -  U(R)) 2K(R) 
T(R)= 3NkB - 3NkB (8) 

we obtain for PE(R, R') the following expression, which is approximate, 
but very accurate when N is large: 

Pc(R, R') = exp[ - A U(R, R')/kB T(R)] (9) 

Our microcanonical MC procedure is now obvious. It proceeds according 
to the Metropolis method, except that, instead of having a fixed tem- 
perature, one uses a configuration temperature which is calculated anew at 
each step. More specifically, the following procedure is used: starting with 
an initial configuration R and a total energy E, we compute U(R), which 
leads to the configuration temperature T(R). Then we try to make a ran- 
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dom displacement of one of the atoms, leading to the new configuration R'. 
Then ~U(R, R') is calculated. From there, a new kinetic energy is found 
according to K ( R ' ) = K ( R ) - A U ( R ,  R'), so that the total energy is con- 
served. The move is rejected if this quantity ever happens to be negative 
[but unless the temperature is very low or the random move unreasonably 
large, this should not occur, because K(R) is of the order N and AU(R, R') 
is of order 1 ]. In the opposite case, it is accepted or rejected according to 
the probability mini1, PE(R, R')J. We then iterate, starting either from the 
new configuration if it has been accepted or otherwise from the old one. 
The only difference with the standard Metropolis method is that, instead of 
being fixed once and for all, the temperature is calculated at each step, so 
as to keep the total energy constant. 

The second MC method considered here for the microcanonical 
ensemble is an extension of that proposed by Creutz for systems with no 
kinetic energy. In the Creutz method, there is a demon with energy ED in 
charge carrying energy from one atom to the other while the total energy 
of the system is kept constant. The difference is that here both potential 
and kinetic energy must be changed. The total energy may thus be written 
a s  

E =  �89 Z mv2 + U(R) + ED ---- Es(V, R) + E D (10) 
i 

where vi is the velocity vector of the ith atom and V = {vl, v2 ..... VN). In 
order to provide a microcanonica] sampling including precisely the same 
constraints as in the MD simulations, the demon may also be given a 
momentum PD SO as to conserve the total momentum P, 

P=~Pi+PD (ll) 
i 

which is chosen equal to zero. The demon is allowed to exchange energy 
and momentum with the atoms, but subjected to the conditions that E and 
P are kept constant. The sampling procedure is carried out in the following 
way. Starting from an initial condition with velocities V and positions R, 
and where the demon energy has some definite value ED (which may be 
taken as equal to zero at the very beginning of the computation), we 
change the velocity vi and the position r i by a random amount: vi and r~ 
become v~ and r~, respectively. This random move in phase space modifies 
Es(V, R) by the amount AEs  = Es(V' ,  R ' ) -  Es(V, R). It will be accepted if 
the three conditions 

m(v~ x - vT) p~ < 0 

rn(v; y -  v~) p~ < 0 (12) 
t z  z z 

m(v i --Vi)PD<O 
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and either one of the two following conditions are realized 

AEs<O 
(13) 

ED -- AEs > 0 

When the move is accepted, ED is replaced by ED-  AEs and PD is replaced 
by pD+m(v~-vi). As is explained by Creutz, (~ statistical mechanics 
implies that the probability distribution of ED is a canonical distribution, 
i.e., 

P(ED) ~- exp(-  ED/kB T) (14) 

This also implies that (ED) =kaT, so that ED is of order 1. when Es is of 
order N. Due to the random sampling of velocities, this latter method is 
less efficient than the preceding one, by a factor of around 8. 

The two procedures were applied to the system of 4000 atoms 
described in the previous section with a total energy of ,,,3.74e per atom. 
The thermodynamic properties calculated by these microcanonical MC 
methods are summarized in Table I. As expected they are identical within 
statistical uncertainties (~  1.0%) with the results of time-reversible MD 
simulations. 

4. C O N C L U S I O N  

Based on computer simulations of classical fluids, the present paper 
provides a realistic model illustrating the foundations of the Boltzmann's 
approach to statistical mechanics. Paradoxically, computer simulations 
have sometimes been used against Boltzmann's point of view, due to their 
imperfections, which we show here how to eradicate. Our computer model 
is realistic enough to incorporate what seems to be the main features of real 
liquids, and indeed shows the observed irreversible behavior of such 
systems despite the fact that it is deterministic, time reversible, and not 
subject to small external random perturbations. 

A P P E N D I X  

We give below the essential parts of the Fortran program which was 
used to perform explicit time-reversible MD simulations. To take into 
account the short range of the interaction, we use tables of neighboring 
atoms which are updated at regular time intervals, a procedure which does 
not preclude the generation of time-reversible trajectories. The present form 
of the program supposes that the computer is able to perform integer 
arithmetic operations on integers of 64 bits. 
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Program Fortran 

C IM is the number of atoms. 
C ITM is the number of integration steps before time reversal. 
C RO is the density. 
C EL is the side of the cubic volume with periodic boundary conditions. 
C SC is the square of the range of the repulsive part of the Lennard-Jones 

pair potential. 
C R2M is the square of the radius of the sphere enclosing the neighbors of 

a given atom. 
C H is the integration time step. 
C The number of neighbors of each atom is in the array IK. 
C The indices of the neighbors are in the array INW. 
C The array INW is updated after ITMOD,  2* ITMOD ..... integration 

steps. 
C Array XP floating coordinates of the atoms at time t = 0. 
C Array XPP floating coordinates of the atoms at time t = -h .  
C Array INIT integer coordinates of the atoms at time t = 0. 
C Array IXP integer coordinates of the atoms at time t. 
C Array IXPP integer coordinates of the atoms at time t - h .  
C Array IX integer coordinates of the atoms at time t + h. 

P I  = A C O S (  - 1.) 
EL = (IM/RO)**(1./3.) 
CST = 48 .*H* '2  
NP = 60 
ICT = 2**NP 
ICT2 = 2**(NP - 1 ) 
SC = 2.**(1./3.) 
R2M = (SQRT(SC) + H*20.*V0*ITMOD)**2 

C The initial configuration XP is an FCC lattice. 
C The subroutine function HAS generates uniform random numbers 

between ]0,1.]. 
C The coordinates XPP differs from XP by Gaussian random displacements: 
C (array DIS) of variance V0" '2/2.  and average UZ. 

DO 9 IC = 1, 3 
UZ(IC) = 0. 
DO 8 1 = 1, IM 
ZI = HAS(NAS) 
Z2 = HAS(NAS) 
DIS(I, IC) = H*V0*SQRT( - ALOG(Z 1 ))*COS(2. *PI*Z2) 
UZ(IC) = UZ(IC)  + DIS(I, IC) 

8 C O N T I N U E  
UZ(IC ) = UZ(IC) t iM 
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9 C O N T I N U E  
DO 10 IC = 1, 3 
D O  10 I =  1,IM 
IXP(I,  I f )  = INT(XP(I ,  IC)*ICT/EL)  
INIT(I ,  IC) = IXP(I,  IC) 
XPP(I ,  IC) = XP(I,  IC) - DIS(I,  IC) - UZ(IC)  
IXPP(I ,  IC) = INT(XPP(I ,  IC)*ICT/EL)  

10 C O N T I N U E  
IT = 0 
IYY = 0 
N T D  = 0 
I V =  1 

C Beginning of the integration loop. 
100 IT = IT  + IV 

D O  300 IC = 1, 3 
D O  300 1 = 1, IM 
IFP(I ,  I f )  = 0 

300 C O N T I N U E  
I F ( M O D ( N T D ,  I T M O D ) .  EQ. 0) T H E N  

C Computat ion of the table I N W  of neighboring atoms. 
D O  49 1 = 1, IM 
I K 0 )  = 0 

49 C O N T I N U E  
D O  29 1 = 1, IM - 1 
N N  = IK( I )  
D O 1 9 J = I + I , I M  
; ICC(J,  1) = ICC(J,  1) - ICT 
IF((ICC(J ,  1). L T . 0 ) . A N D .  (ABS(ICC(J, i ) ) . G T . I C T 2 ) )  
; ICC(J, 1 ) = ICC(J, 1) + ICT 
IF((ICC(J ,  1 ). LT.0) .  AND.  (ABS(ICC(J, 1 )). GT.  ICT2))  

ICC(J, 1) = ICC(J,  1 ) + ICT 
CC(J, 1) = ICC(J, 1)*EL/ICT 
... idem for the other two coordinates .... 
R2(J) = (CC(J, 1 )**2 + CC(J, 2)**2 + CC(J, 3)**2) 

19 C O N T I N U E  
D O  30 J = I +  1,IM 
I F ( R 2 ( J ) . G T . R 2 M )  G O  TO 30 
N N  = N N  + 1 
IK(J)  = IK(J)  + 1 
INW(J,  !K(J) )  = I 
INW(I ,  N N )  = J 

30 C O N T I N U E  
IK( I )  = N N  
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29 C O N T I N U E  
ENDIF  
NTD = NTD + 1 

C Computation of the distances and forces IFP. 
DO 32 1 = 1, IM 
IF( IK( I ) .NE.0 )  T H E N  
DO 42 J = 1,IK(I) 
IP = INW(I,J)  
ICC(J, 1 ) = IXP(I, 1 ) - IXP(IP, 1 ) 
IF((ICC(J, 1). GT .0 ) .AND.  (ABS(ICC(J, 1)). GT. ICT2))  
; ICC(J, 1) = ICC(J, 1) - ICT 
IF((ICC(J, 1 ). LT. 0). AND. (ABS(ICC(J, 1 )). GT.  ICT2)) 
; ICC(J, 1) = ICC(J, 1) + ICT 
CC(J, 1 ) = ICC(J, 1 )*EL/ICT 
... idem for the other two coordinates .... 
R2(J) = (CC(J, 1 )* '2  + CC(J, 2 )* '2  + CC(J, 3)* '2)  
PH(J)  = 0. 
IF(R2(J). LE.SC)  PH(J)  = CST*(1./R2(J)**7 - 0.5/R2(J)**4) 

42 C O N T I N U E  
DO 40 IP = 1,IK(I) 
IPH(IP,  1) = INT(ICT*PH(IP)*CC(IP ,  1)/EL) 
IPH(IP,  2) = INT(ICT*PH(IP)*CC(IP ,  2)/EL) 
IPH(IP,  3) = INT(ICT*PH(IP)*CC(IP ,  3)/EL) 

40 C O N T I N U E  
DO 20 IP = 1,IK(I) 
IFP(I,  1 ) = IFP(I,  1 ) + IPH(IP,  1 ) 
IFP(I,  2) = IFP(I,  2) + IPH(IP,  2) 
IFP(I,  3) = IFP(I,  3) + IPH(IP,  3) 

20 C O N T I N U E  
ENDI F  

32 C O N T I N U E  
C Integration of the motion (IFP included the factor h**2). 
C The coordinates are modified according to the periodic boundary 

conditions. 
DO 50 IC = 1,3 
DO 50 I =  1,IM 
IX(I, IC) = 2*IXP(I, IC) - IXPP(I,  IC) + IFP(I,  IC) 
IF(IX(I, IC). GT.  ICT) T H E N  
IX(i, IC) = IX(I, IC) - ICT 
IXP(I, IC) = IXP(I, IC) - ICT 
IXPP(I,  IC) = IXPP(I,  IC) - ICT 
ELSE 
IF(IX(I, IC). LT. 0) T H E N  
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IX(I, IC) = IX(I , IC)  + ICT 
IXP(I,  IC) = IXP(I,  IC)  + ICT 
IXPP(I ,  IC) = IXPP(I ,  IC) + ICT 
E N D I F  
E N D I F  

5O C O N T I N U E  
IF( IT .  EQ.  I T M )  T H E N  
IF(IYY. EQ.0)  T H E N  

C End of the forward trajectory. 
C Beginning of the backward trajectory. 

D O  66 IC = 1, 3 
D O  66 1 --- 1, IM 
ITEMP(I ,  IC) =- IXPP(I ,  IC) 
IXPP(I ,  IC) = IX(I,  IC) 
IX(l, IC)  = ITEMP(I ,  IC) 

66 C O N T I N U E  
D O  56 IC = 1, 3 
D O  56 1 = 1, IM 
IF(IXP(I ,  IC).  GT.  ICT)  T H E N  
IX(T, IC)  = IX(I, IC) - ICY 
IXP(I ,  IC) = I X P ( I , I C ) -  ICT 
IXPP(I ,  IC)  = IXPP(I ,  IC) - ICT  
ELSE 
IF( IXP(I ,  I C ) . L T . 0 )  T H E N  
IX(I,  IC)  = IX(I,  IC) + ICT 
IXP( I , IC)  = IXP(I,  IC) + ICT 
IXPP(I ,  IC)  = IXPP(I ,  IC) + ICT 
E N D I F  
E N D I F  

56 C O N T I N U E  
IV = - I V  
IT  = IT  - IV 
I T M  = 1 
IYY = 1 
ELSE 

C The atoms have gone back to their initial positions. 
I P = 0  
D O  7I IC = I, 3 
D O  71 I = I , ! M  
tP = IP  + ABS(IXP(I,  IC) - INIT(I ,  IC))  

71 C O N T I N U E  
W R I T E  (21, *)' IP ' ,  IP  
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C E n d  of the b a c k w a r d  t ra jec tory .  

S T O P  

E N D I F  
E L S E  

C T i m e  e v o l u t i o n  of one  step. 
D O  60 IC  = 1, 3 

D O  60 1 = 1, I M  
I X P P ( I ,  IC )  = IXP( I ,  I C )  

IXP(I, IC) = IX(I, IC) 
60 CONTINUE 

ENDIF 
G O  T O  100 

E N D  

A C K N O W L E D G M E N T  

W e  t h a n k  J. Lebowi tz  for s t imu la t i ng  a n d  helpful  d iscuss ions .  
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